1. Considerations

On the Ground
- Aeroplane has tendency to weathercock into wind
- Position controls to compensate for wind

On Takeoff
- Allow for drift to track along the runway centreline

In the Circuit
- Allow for drift and headwind/tailwind on each leg
- Base leg will be affected the most

On Landing
- As crosswind increases amount of flap used decreases – to improve directional control
- More airspeed needed if gusty conditions
- Need to consider overall suitability of runway on crosswind conditions

Maximum Demonstrated Crosswind
- In Flight Manual
- Limited by ability of rudder to control aeroplane
- For this aeroplane is _______ knots

Calculating Crosswind Component
- Need W/V from TAF or METAR
- Convert the direction to Magnetic – apply variation

Vector Diagram
- Need pencil, paper, ruler and protractor

Flight Manual Graph
- Need pencil, paper, ruler and protractor

Nav Computer
- Need pencil, paper, ruler and protractor

Windsock
- Need pencil, paper, ruler and protractor

Tower
- Need pencil, paper, ruler and protractor

Formula
- Angular difference between wind and RWY
- Plot on watch face
- Percentage of distance around watch face x wind strength = X/W component
- 30° = half wind strength, 60° = full wind strength

2. Airmanship

- Making the calculations improves SA
- Max crosswind is a recommendation, but may be other limits
- Control position on ground wrt wind
- May need to use brakes
- Lift off at slightly higher speed than normal
- After lift-off make a gentle balanced turn into wind

3. Aeroplane Management

- Line-up, adjust reference point for drift
- Ailerons fully into wind, elevator neutral
- During takeoff roll reduce aileron to neutral by rotate point

4. Human Factors

- Assessing runway suitability
- Improved ADM
- Lift off at slightly higher speed than normal
- After lift-off make a gentle balanced turn into wind

5. Air Exercise

Takeoff
- Line-up, adjust reference point for drift
- Ailerons fully into wind, elevator neutral
- During takeoff roll reduce aileron to neutral by rotate point

Circuit
- Climb-out
 - Wings level, in balance
 - Adjust heading to track extended centreline

Crosswind
- Reference heading allows for drift
- Expect some headwind or tailwind

Downwind
- Allow for wind on downwind turn
- Track parallel to runway
- Assess runway and decide on speeds and flap setting to use
- Check downwind spacing

Base
- Allow for drift and headwind or tailwind
- Extend all the landing flap
- Anticipate turn onto final

Final
- Track extended centreline
- Power controls rate of descent

Landing
- Combination of kick straight and wing down methods

Kick-straight
- Crab into wind
- Just before touchdown, kick straight, aileron to keep on centreline

Wing-down
- From short final
- Wing held down, rudder to keep aligned with centreline – Sideslip
- Land on into wind wheel first

Combination
- Crab into wind on final
- During round-out switch to wing down method,
- Aileron to stay aligned with centreline, rudder to stay straight
- Into wind wheel touches down first